CONTEXT PROFILE

FARMER **Claas Bartels**

INNOVATION 3-breed crossbreeding system

MAIN DOMAIN OF THE INNOVATION Breeding advance

AGROCLIMATIC AREA Atlantic central

CLIMATE Moderate rainfall

SOIL TYPE Sand

MANAGEMENT Pasture dairy

TECHNICAL Difficult

FINANCE/INVESTMENT Mid

MARKET Local-urban

SOCIAL Full-time farmer

CONTEXT PROFILE GERMANY

Case Study: DE_03	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Three-breed cross (Holstein, Swedish Red-and-White, Montbéliarde	+++	+++	+++	+++	+++	++	++	++	++
Short sward grazing system (kurzrasen)	++	+++	+++	+++	++	++	++	++	++

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

different breeds different • Use in agroclimatic zones

Research Gaps

- Optimum share of each of the different breeds
- Appropriate breeds for cross-breeding in different agroclimatic zones
- Disentangle the effect of cross-breeding and grazing system

agroclimatic zones

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• Use different breeds different in

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	not applicable/not known
On-going certification costs	not applicable/not known
On-going buildings and machinery costs	not applicable/not known
On-going working capital	not applicable/not known

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

mid
not applicable/not known

not applicable/not known
mid
not applicable/not known
mid
not applicable/not known

high
high
high
high

mid	
not applicable/not known	

Literature

English

- F. Buckley, N. Lopez-Villalobos, B.J. Heins, (2014) Crossbreeding: implications for dairy cow fertility and survival, Animal, Volume 8, Supplement 1 Pages 122-133,
- B. McClearn, L. Delaby, T.J. Gilliland, C. Guy, M. Dineen, F. Coughlan, F. Buckley, B. McCarthy, (2014) An assessment of the production, reproduction, and functional traits of Holstein-Friesian, Jersey × Holstein-Friesian, and Norwegian Red × (Jersey × Holstein-Friesian) cows in pasture-based systems, Journal of Dairy Science, Volume 103, Issue 6, Pages 5200-5214

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.