CONTEXT PROFILE

FARMER Stilla Seemann

INNOVATION

Restructuration, clover grass cultivation on arable land

MAIN DOMAIN OF THE INNOVATION Improvement of nutrient cycle

AGROCLIMATIC AREA Atlantic central

CLIMATE Moderate rainfall

SOIL TYPE Peat

MANAGEMENT Pasture dairy

TECHNICAL

CONTEXT PROFILE GERMANY

Case Study: DE_15	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Convert full housing management to a grazing system	++	+++	+++	+++	+++	+++	+++	+++	+++
Convert maize to grass clover	X	+++	+++	+++	Х	+++	+++	Х	+
Change genetics from Holstein Frisian to Jersey	+++	+++	+++	+++	+++	+++	+++	+++	+++

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

- Economic, cultural and socioeconomic issues (motivation and values of the farmer)
- Regional constraints, like
 - Steep landscape with limits on grazing for cows
 - Wild animals (predators)
 - Short grazing period, hard winter
 - Dry summer period (no grazing during summer possible)

Research Gaps

• Socioeconomic approach how to transform to sustainable farming systems

- flooding

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• Switch to small ruminants

• Breeding of crops that are adapted to the system, e.g. tolerant to drought and

• Education and awareness of young farmers

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	mid
On-going certification costs	low
On-going buildings and machinery costs	low
On-going working capital	mid

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

mid	
low	
high	
low	
low	
high	

high
high
high
not applicable/not known

high
high
high
high
high

not applicable/not known

none or low

Literature

English

- https://onlinelibrary.wiley.com/doi/full/10.1111/gfs.12639
- <u>https://www.sciencedirect.com/science/article/pii/S2772283X22007701</u>
- <u>https://www.sciencedirect.com/science/article/abs/pii/S1871141323001191</u>
- <u>https://www.sciencedirect.com/science/article/pii/S0022030221009486</u>
- <u>https://www.sciencedirect.com/science/article/pii/S0022030206724729</u>

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.