

# CONTEXT PROFILE





# **FARMER** Alexander Agethle



## **INNOVATION**

Cheese production and successful marketing using local adapted breeds on extensive pastures





## MAIN DOMAIN OF THE INNOVATION

Improvement of marketing



## **AGROCLIMATIC AREA**

Alpine



# **CLIMATE**

Little rainfall



## **SOIL TYPE**

Sand



## **MANAGEMENT**

Pasture Dairy



## **TECHNICAL**

Easy



# FINANCE/INVESTMENT

Low



## **MARKET**

Local-urban



## **SOCIAL**

Full-time farmer





| Case Study: IT_07                                                                                                                            | Agroclimatic Zone |                     |                   |                   |        |                      |                      |                        |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------|-------------------|--------|----------------------|----------------------|------------------------|------------------------|
| Item (Key Innovation Elements)                                                                                                               | Alpine            | Atlantic<br>Central | Atlantic<br>North | Atlantic<br>South | Boreal | Continental<br>North | Continental<br>South | Mediterranean<br>North | Mediterranean<br>South |
| Availability of additional labour capacity<br>and for the establishment and<br>maintenance of a market for the direct<br>marketing of cheese | +++               | +                   | +                 | ++                | +++    | +++                  | +++                  | +++                    | +                      |
| Seasonal short-sward grazing (in spring<br>and autumn only), keeping the cows at<br>a remote location (summer pastures) in<br>summer         |                   | ++                  | X                 | ++                | X      | +++                  | +++                  | +++                    | ++                     |













# **Implementation Gaps**

- Climatic constraints to the implementation of short sward grazing systems (e.g. drought)
- Overgrazing risk in dry springs

## **Research Gaps**

 Influence of dung concentration spots on short sward pasture on grass quality: potentially unequal distribution of manure on standing pastures may affect grass regrowth structure

## **Suggestions to Adapt**

- Consider seasonal rotational grazing instead of short-sward grazing, when paddocks (as in this case) are fragmented and not joint together
- Because the goal is to maximize grass growth in the early spring months, farms should start spreading manure 2-4 weeks before onset of grazing season
- Implement seasonal winter/early spring calving to adapt lactation curve of cows to highest grass productivity of the shortsward pasture
- To stimulate grass growth reduce the weed pressure during summer (between mid-June and beginning of September) and to prepare pastures for the return of the herd, pre-grazing topping could be a qualitycontrol maintenance



# **COST-BENEFIT ANALYSIS**

## **INVESTMENT COSTS**

| Total initial investment costs at start up:                                     | high |
|---------------------------------------------------------------------------------|------|
| Initial authorisation costs (e.g. sanitary, veterinary, etc.)                   | high |
| Initial advisory costs                                                          | low  |
| Initial buildings and machineries                                               | high |
| Initial certification costs                                                     | low  |
| Initial working capital (personal qualification, marketing and promotion, etc.) | high |

## **ON-GOING COSTS**

| On-going advisory costs                | low  |
|----------------------------------------|------|
| On-going certification costs           | low  |
| On-going buildings and machinery costs | mid  |
| On-going working capital               | high |

#### **BENEFITS RELATIVE TO ORIGINAL SYSTEM**

#### Economic

| Reduction in energy consumption (electricity; fuel consumption)                  | high                     |
|----------------------------------------------------------------------------------|--------------------------|
| Reduction in input use (fertilizers; pesticides; feed) etc.                      | high                     |
| Payback period                                                                   | none or low              |
| Product value added                                                              | high                     |
| Additional farm income through agroecological/agri-environmental payment schemes | not applicable/not known |

#### Environmental

| Animal feed self-sufficiency increase | high |
|---------------------------------------|------|
| Biodiversity increase                 | high |
| Improved nitrogen cycling             | high |
| Soil regeneration                     | high |
| Animal health and welfare improvement | high |

## Social

| Workload reduction             | mid  |
|--------------------------------|------|
| Engagement of young generation | high |