

CONTEXT PROFILE

FARMER Michele & Domenico Riu

- Monteforte

INNOVATION

No-till seeding of forage mixtures in hilly pastures to control soil erosion

MAIN DOMAIN OF THE INNOVATION

Improvement of grassland management

SOIL TYPE

Sand

AGROCLIMATIC AREA

Mediterranean South

MANAGEMENT

Pasture Dairy

TECHNICAL

Easy

MARKET

Local-rural

All contents of this document are expert opinions of the G4AE Scientific Technical Working Group

Case Study: IT_10	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
No till grass sowing	++	+++	++	++	++	+++	+++	+++	+++
Pre sowing weed control	++	+++	+++	+++	+++	+++	+++	+++	+++
Mixed species swards with adapted species and varieties	++	+++	+++	+++	+++	+++	+++	+++	+++
Reduce soil eroision	++	++	++	++	++	++	++	+++	+++

Implementation Gaps

- Availability of the right type of seeder
- Weed burden
- Farm knowledge and know how
- Contractor knowledge and know how
- Need some rainfall for establishment
- Farm knowledge and know-how (mind-set)
- Weed management options

Research Gaps

- Seeding rate
- Weed control
- Yield comparison
- Benefits for soil structure

Suggestions to Adapt

- Examine if seeders can be adapted
- Group purchase of seeder (i.e. a group of farmers buy the seeder and share it's use)
- Demonstration
- Be partner in OGs working on conservative soils technique
- Effective weeding methods without chemicals

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:	low
Initial authorisation costs (e.g. sanitary, veterinary, etc.)	not applicable/not known
Initial advisory costs	mid
Initial buildings and machineries	mid
Initial certification costs	not applicable/not known
Initial working capital (personal qualification, marketing and promotion, etc.)	low

ON-GOING COSTS

On-going advisory costs	mid
On-going certification costs	not applicable/not known
On-going buildings and machinery costs	low
On-going working capital	mid

BENEFITS RELATIVE TO ORIGINAL SYSTEM

Economic

Reduction in energy consumption (electricity; fuel consumption)	not applicable/not known
Reduction in input use (fertilizers; pesticides; feed) etc.	mid
Payback period	high
Product value added	mid
Additional farm income through agroecological/agri-environmental payment schemes	not applicable/not known

Environmental

Animal feed self-sufficiency increase	none or low
Biodiversity increase	mid
Improved nitrogen cycling	mid
Soil regeneration	mid
Animal health and welfare improvement	high

Social

Workload reduction	high
Engagement of young generation	not applicable/not known

Literature

English

- Gabriel Minea, Oana Mititelu-Ionuș, Yeboah Gyasi-Agyei, Nicu Ciobotaru, Jesús Rodrigo-Comino, 2022. Impacts of Grazing by Small Ruminants on Hillslope Hydrological Processes: A Review of European Current Understanding. Water Resource Research. https://doi.org/10.33584/rps.17.2021.3487
- Book. Yash P. Dang, Ram C. Dalal, Neal W. Menzies (Editors), 2020. No-till Farming Systems for Sustainable Agriculture. Challenges and Opportunities. Springer
- L. K. Öttl, F. Wilken, A. Hupfer, M. Sommer & P. Fiener. Non-inversion conservation tillage as an underestimated driver of tillage erosion. Sci Rep 12, 20704 (2022). https://biblioproxy.cnr.it:2481/10.1038/s41598-022-24749-7
- Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative Agriculture: An agronomic perspective. Outlook on Agriculture, 50(1), 13-25. https://biblioproxy.cnr.it:2481/10.1177/0030727021998063
- Van Oost, K., Govers, G., De Alba, S., & Quine, T. A. (2006). Tillage erosion: a review of controlling factors and implications for soil quality. Progress in Physical Geography: Earth and Environment, 30(4), 443-466.
- https://biblioproxy.cnr.it:2481/10.1191/0309133306pp487ra
- https://doi.org/10.1016/j.eja.2016.02.011
- https://doi.org/10.1016/j.still.2009.10.009
- https://doi.org/10.1016/j.eja.2012.02.002
- https://doi.org/10.1016/j.catena.2020.104972
- https://link.springer.com/article/10.1007/s12155-015-9690-2

Video

- Video (English) and text: https://www.climatehubs.usda.gov/hubs/international/topic/no-till-farming-climate-resilience
- https://www.youtube.com/watch?v=DBYeb66dN80
- https://www.bing.com/videos/riverview/relatedvideo?&g=use+of+no+tillage+erosion&&mid=301FDABE25274E3FC958301FDABE25274E3FC958&&FORM=VRDGAR