CONTEXT PROFILE

FARMER Auke Spijkerman

INNOVATION Optimising seasonal calving for sustainable grazing

MAIN DOMAIN OF THE INNOVATION Animal management

AGROCLIMATIC AREA Atlantic central

CLIMATE Moderate rainfall

SOIL TYPE Sand

MANAGEMENT Pasture dairy

TECHNICAL

FINANCE/INVESTMENT Low

MARKET Global

SOCIAL Full-time farmer

CONTEXT PROFILE THE NETHERLANDS

Case Study: NL_10	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Strategic alignment of calving and pasture use	+++	+++	+++	+++	+++	+++	+++	+++	+++
Use of seasonal calving to optimize forage utilization	+++	+++	+++	+++	+++	+++	+++	+++	+++
Crossbreeding for improved resilience and grazing efficiency	+++	+++	+++	+++	+++	+++	+++	+++	+++
Intensive grazing with frequent field use	++	+++	+++	+++	++	++	+	+	+

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

• Achieving and maintaining excellent cow fertility

Research Gaps

- Applicability of the system in regions with lower rainfall or more variable climates
- Long-term impacts of seasonal calving on animal health and productivity
- Resilience of the system under drought conditions
- Potential need for grassland renovation in the long term

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• Consider allowing strategic transfer of some cows from spring to autumn calving by extending lactation periods

• Less intensive grazing in regions with less rainfall and grass growth

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	low	
On-going certification costs	mid	
On-going buildings and machinery costs	low	
On-going working capital	low	

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

low
not applicable/not known
not applicable/not known
not applicable/not known
mid
not applicable/not known

high
high
high
high
high

high
high
not applicable/not known
not applicable/not known
high

high		
high		

Literature

English

• <u>https://www.journalofdairyscience.org/article/S0022-0302(10)00095-0/pdf</u>

**. Funded by the European Union Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.