

CONTEXT PROFILE

THE NETHERLANDS

INNOVATION

Grazing practices and longevity of dairy cows

MAIN DOMAIN OF THE INNOVATION

Animal management

AGROCLIMATIC AREA

Atlantic central

CLIMATE

Moderate rainfall

SOIL TYPE

Clay

MANAGEMENT

Pasture dairy

TECHNICAL

Easy

FINANCE/INVESTMENT

Low

MARKET

Global

SOCIAL

Full-time farmer

Case Study: NL_11	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Integrated, holistic farm concept combining productivity, animal welfare, and nature conservation	+	+++	+++	+	+	+	+	+	+
Strategic calving schedule that avoids the hottest months to reduce heat stress	+++	+++	+++	+++	+++	+++	+++	+++	+++
Use of resilient crossbreed cows suited to grazing and longevity	+++	+++	+++	+++	+++	+++	+++	+++	+++
Smart use of nearby nature reserves as a forage buffer during dry periods	+++	+++	+++	+++	+++	+++	+++	+++	+++

Implementation Gaps

- Innovation lies in the unique combination of multiple strategies rather than individual elements
- Sufficient grassland availability is essential to support this system
- Limited replicability in areas with less land or different climatic conditions

Research Gaps

- Impact on cow health, welfare, and longevity under more intensive conditions
- Viability of extensive grazing systems on less fertile soils
- Long-term effects of partial nature-based buffering strategies on farm sustainability

Suggestions to Adapt

- Tailor this integrated concept to local conditions
- Select elements (e.g. calving schedule, forage buffering) to other farms

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:	low
Initial authorisation costs (e.g. sanitary, veterinary, etc.)	not applicable/not known
Initial advisory costs	not applicable/not known
Initial buildings and machineries	not applicable/not known
Initial certification costs	not applicable/not known
Initial working capital (personal qualification, marketing and promotion, etc.)	not applicable/not known

ON-GOING COSTS

On-going advisory costs	low
On-going certification costs	low
On-going buildings and machinery costs	low
On-going working capital	low

BENEFITS RELATIVE TO ORIGINAL SYSTEM

Economic

Reduction in energy consumption (electricity; fuel consumption)	not applicable/not known
Reduction in input use (fertilizers; pesticides; feed) etc.	not applicable/not known
Payback period	high
Product value added	not applicable/not known
Product value added	Hot applicable/Hot KHOWH

Environmental

Animal feed self-sufficiency increase	high
Biodiversity increase	high
Improved nitrogen cycling	not applicable/not known
Soil regeneration	not applicable/not known
Animal health and welfare improvement	high

Social

Workload reduction	high
Engagement of young generation	not applicable/not known

Literature

English

- https://pmc.ncbi.nlm.nih.gov/articles/PMC7999272/
- https://pmc.ncbi.nlm.nih.gov/articles/PMC7028026/
- https://extension.sdstate.edu/sites/default/files/2021-05/S-0013-49.pdf