

CONTEXT PROFILE

MAIN DOMAIN OF THE INNOVATION

Improvement of grassland management

AGROCLIMATIC AREA

Atlantic central

CLIMATE

Moderate rainfall

SOIL TYPE

Clay

MANAGEMENT

Pasture dairy

TECHNICAL

Easy

FINANCE/INVESTMENT

Low

MARKET

Global

SOCIAL

Full-time farmer

Case Study: NL_12	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Cows are offered access to two different paddocks each day—one with fresh, leafy grass (typically grazed during the day), and one previously grazed paddock with more stemmy regrowth (typically at night)	+	+++	+++	+++	+	+++	+++	+	+
Sufficient accessible grazing area	+++	+++	+++	+++	+++	+++	+++	+	+
Weekly farmwalk	+++	+++	+++	+++	+++	+++	+++	+++	+++

Implementation Gaps

- Sufficient paddocks near the milking parlour
- Night grazing preferably close to the milking parlour to reduce walking time early in the morning, particularly during autumn when it is still dark

Research Gaps

- A controlled experiment with the same stocking rate but different grazing management—alternating between day and night paddocks versus a single paddock—could help evaluate the impact on pasture utilisation, grazing behaviour and animal performance
- A study on the long-term effects of alternating paddocks on soil health, grass regrowth, and overall farm productivity would be valuable to understand the sustainability of this grazing practice in the long-term

Suggestions to Adapt

 Implementing tools such as grazing management software or apps could help the farmer track and analyse pasture conditions, grazing rotations, and cow behaviour

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:	low
Initial authorisation costs (e.g. sanitary, veterinary, etc.)	not applicable/not known
Initial advisory costs	not applicable/not known
Initial buildings and machineries	not applicable/not known
Initial certification costs	not applicable/not known
Initial working capital (personal qualification, marketing and promotion, etc.)	not applicable/not known

ON-GOING COSTS

On-going advisory costs	low
On-going certification costs	low
On-going buildings and machinery costs	low
On-going working capital	low

BENEFITS RELATIVE TO ORIGINAL SYSTEM

Economic

Reduction in energy consumption (electricity; fuel consumption)	not applicable/not known
Reduction in input use (fertilizers; pesticides; feed) etc.	not applicable/not known
Payback period	high
Product value added	not applicable/not known

Environmental

Animal feed self-sufficiency increase	high
Biodiversity increase	none or low
Improved nitrogen cycling	not applicable/not known
Soil regeneration	not applicable/not known
Animal health and welfare improvement	not applicable/not known

Social

Workload reduction	not applicable/not known
Engagement of young generation	not applicable/not known

Literature

National Language

• French website of the National Technology Network "Grasslands in the Future" https://afpf-asso.fr/fiches-methode-du-rmt A protocol to measure grass growth on farm.

English

- Delaby L., Duboc G., Cloet E., Martinot Y. (2015) Pastur'Plan: a dynamic tool to support grazing management decision making in a rotational grazing system. Grassland Science in Europe 20, 110-112
- Hanrahan L., Geoghegan A., O'Donovan M., Griffith V., Ruelle E., Wallace M., Shalloo L. (2017) PastureBase Ireland: A grassland decision support system and national database. Computer and Electronics in Agriculture 136, 193-201, https://doi.org/10.1016/j.compag.2017.01.029