CONTEXT PROFILE

FARMER Diogo Pinho – Monte da Silveira Bio

INNOVATION High-quality composting - "compost tea"

MAIN DOMAIN OF THE INNOVATION Improvement of plant protection

AGROCLIMATIC AREA Atlantic south

CLIMATE Moderate rainfall

MANAGEMENT Ley farming

TECHNICAL

CONTEXT PROFILE PORTUGAL

Case Study: PT_06	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Integrated crop-livestock systems (silvopastoral systems) - montado	+++	++	++	++	++	++	++	++	++
Compost production	+++	+++	++	++	++	+++	+++	+++	+++
Extensive know-how of manure & compost management	++	+++	++	++	++	+++	+++	+++	+++
Rotational grazing & cover crop management	+++	+++	+++	+++	++	+++	+++	+++	+++
Water access & adapted machineries to inject liquid compost in compacted soil	++	+++	++	++	++	++	++	++	++
Intensive landscape planning leading to improved agricultural ecosystem services - inject liquid compost in compacted soil	++	++	++	++	++	++	++	++	++

+++ Strong transferability ++ Slightly limited transferability ++ Very limited transferability

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

- Aces to know- how for manure & compost management;
- Machineries adapted to different soil types & altitude regions

Research Gaps

- Positive & negative effects on groundwater and biodiversity;
- Soil quality improvement & grass production improvement;
- Emission of nitrous oxide and other trace gases during composting
- Effects of different kinds of manure from different animal species on soil and plant species

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	low
On-going certification costs	mid
On-going buildings and machinery costs	high
On-going working capital	high

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

high	
high	
mid	
high	
high	
high	

mid
high
mid

mid
high
mid
high

high
none or low

Literature

English

- Field and laboratory evaluation of soil quality changes resulting from injection of liquid sewage sludge S Stamatiadis, JW Doran, T Kettler Applied Soil Ecology, 1999 -Elsevier
- Effect of subsoiling and injection of pelletized organic matter on soil quality and productivityLA Leskiw, CM Welsh, TB Zeleke Canadian Journal of Soil ..., 2012 cdnsciencepub.com
- Assessment of manure compost used as soil amendment—A reviewE Goldan, V Nedeff, N Barsan, M Culea... Processes, 2023 mdpi.com
- Nitrogen availability from composts for humid region perennial grass and legume-grass forage production DH Lynch, RP Voroney... Journal of Environmental ..., 2004 - Wiley Online Library

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.