CONTEXT PROFILE

FARMER

Pompeu Pais Dias – Sociedade Agrícola Mendes Jorge

INNOVATION Livestock decrease to improve the Montado's sustainability

MAIN DOMAIN OF THE INNOVATION Animal management

AGROCLIMATIC AREA Atlantic south

CLIMATE Moderate rainfall

SOIL TYPE Loam

MANAGEMENT Pasture beef

TECHNICAL

FINANCE/INVESTMENT Low

MARKET Local-rural

SOCIAL Part-time farmer

CONTEXT PROFILE PORTUGAL

Case Study: PT_09		Agroclimatic Zone					
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Contin Sout
Intergenerational (three generations) cooperation	++	Х	++	++	++	++	+-
Combination of beef cattle (250 animals) and Lusitano horses (25) for dressage	+	Х	+	+	+	+	+
Reducing stocking rates by extensive grazing in order to promote sustainable development of the agrosilvopastoral complex	++	++	+++	+++	+	+++	++

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

- Lack of intergenerational cooperation (here, three generations working in family farm as part-time farmers)
- Insufficient farm area (the system is implemented on a large farm area of 800 ha: 600 ha arable land + 200 ha permanent crops)

Research Gaps

• Link between growth of younger holm oaks and oaks and the sustainable development of the agrosilvopastoral complex

- for the local climate
- horse breeds
- bridge feed gaps

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• Use local genotypes of trees mores suitable

• ombination of beef cattle with other animal species (not necessary horses) or use local

• Plant/use trees and hedgerows as forage source under drought as a strategy to

• Use other forage sources suitable adapted to (semi-)arid mixed crop-livestock systems (e.g. forage legumes, lablab)

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	
On-going certification costs	
On-going buildings and machinery costs	
On-going working capital	

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

low
low
low
low
low
not applicable/not known

low	
not applicable/not known	
not applicable/not known	
not applicable/not known	

mid
mid
high
none or low
none or low

mid
none or low
mid
mid
high

high
none or low

Literature

English

Forage hedgerows within an alpine contexts:

• <u>https://www.agroscope.admin.ch/agroscope/en/home/topics/plant-production/forage-grassland-grazing-systems/anpassung-trockenperioden/agroforstsysteme-</u> futterproduktion.htm

Forage legumes to bridge drought-induced feed gaps in semi-arid areas:

- Bell LW, Moore AD, Thomas DT. Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms. Animal. 2018 Sep;12(9):1967-1980. doi: https://doi.org/10.1017/s1751731117003196
- Katrien Descheemaeker, Rick Llewellyn, Andrew Moore, and Anthony Whitbread "Summer-growing perennial grasses are a potential new feed source in the low rainfall environment of southern Australia," Crop and Pasture Science 65(10), 1033-1043, (7 October 2014 (https://doi.org/10.1071/CP13444)

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.