CONTEXT PROFILE

FARMER

Nuno Rodrigues – Casa Agrícola Manuel Gil Ferreira

MAIN DOMAIN OF THE INNOVATION Improvement of grassland management

AGROCLIMATIC AREA Mediterranean south

CLIMATE Little rainfall

INNOVATION Use of NDVI and thermal integral and implementation of a new culture

SOIL TYPE Sand

L'S

MANAGEMENT Pasture beef

TECHNICAL

FINANCE/INVESTMENT Low

MARKET Local-rural

SOCIAL Part-time farmer

CONTEXT PROFILE PORTUGAL

Case Study: PT_15	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Implementation of agroforestry	++	+++	+++	+++	+++	+++	+++	++	+++
Availability of an irrigation system for temporary grassland on arable land	++	+++	+++	+++	+++	++	++	++	+++
Use of Normalized Difference Vegetation Index (NDVI) for irrigation planning	++	+++	+++	+++	+++	+++	+++	++	+++

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

- Lack of locally adapted validation curves for NDVI for the local vegetation
- Costs and water availability to establish and maintain an irrigation system

Research Gaps

- Locally adapted validation curves to predict yield for NDVI for the local vegetation
- Development of locally adapted Support Decision Systems to optimise irrigation

conditions

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• Use other tree species adapted to the local

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	low	
On-going certification costs	not applicable/not known	
On-going buildings and machinery costs	high	
On-going working capital	high	

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

high
low
low
high
low
high

mid
high
high
none or low

high
high
high
high
high

none or low

Literature

English

• Serrano, J., Shahidian, S., Marques da Silva, J., Paixao, L., Calado, J., de Carvalho, M. 2019. Integration of soil electrical conductivity and indices obtained through satellite imagery for differential management of pasture fertilization. AgriEngineering 1, 567–585; doi:10.3390/agriengineering1040041

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.