CONTEXT PROFILE

FARMER Hort Augustin

INNOVATION Drone usage for farm management in the mountain area

MAIN DOMAIN OF THE INNOVATION Workload reduction

AGROCLIMATIC AREA Continental south

CLIMATE Moderate rainfall

MANAGEMENT Pasture dairy

TECHNICAL

FINANCE/INVESTMENT Low

MARKET Local-rural

SOCIAL full-time farmer

CONTEXT PROFILE ROMANIA

Case Study: RO_04	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Drones to inspect the animals	+	++	+	+	++	+	+	++	++
Acces to interent connection	+	++	+	+	++	+	+	++	++

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

- The cost of the drone can be a limiting factor for many farmers
- The older farmers may not become familiar with this technology
- Type of camera and its specification should consider the needs of the farm
- Adapted for pastures free from dense woody vegetation only

Research Gaps

• Capacity to respond/identify wildlife threats; capacity to respond with lights/sounds;

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• The drone must be used if it is needed (several times a day, depending on the wildlife threats or other purposes).

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	not applicable/not known
On-going certification costs	not applicable/not known
On-going buildings and machinery costs	not applicable/not known
On-going working capital	not applicable/not known

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

low
low
IOW
not applicable/not known
not applicable/not known
mid

not	applicable/not known
-----	----------------------

not applicable/not known

high

not applicable/not known

not applicable/not known

not	applicable/not	known
-----	----------------	-------

not applicable/not known

not applicable/not known

not applicable/not known

not applicable/not known

high high

Literature

English

- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 2020, 12, 126. <u>https://doi.org/10.3390/rs12010126</u>
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 2022, 14, 2903. https://doi.org/10.3390/rs14122903

Funded by ***** * ** • • * the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.