

# CONTEXT PROFILE







## INNOVATION

The BioSilvania farm's short integrated Agri-food chain innovation





## MAIN DOMAIN OF THE INNOVATION

Improvement of marketing



## **AGROCLIMATIC AREA**

Continental south



## CLIMATE

Moderate rainfall



## **SOIL TYPE**

Clay



## **MANAGEMENT**

Pasture dairy



## **TECHNICAL**

Computer-based



# FINANCE/INVESTMENT

High



## **MARKET**

Global



## **SOCIAL**

Part-time farmer





| Case Study: RO_08                                                                                                                                                          | Agroclimatic Zone |                     |                   |                   |        |                      |                      |                        |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------|-------------------|--------|----------------------|----------------------|------------------------|------------------------|
| Item (Key Innovation Elements)                                                                                                                                             | Alpine            | Atlantic<br>Central | Atlantic<br>North | Atlantic<br>South | Boreal | Continental<br>North | Continental<br>South | Mediterranean<br>North | Mediterranean<br>South |
| Cooperative of organic producers (2000 cows, 2200 ha of which 400 are grazed)                                                                                              | ++                | +++                 | +++               | +++               | +++    | +++                  | +++                  | +++                    | +++                    |
| Self-sufficiency in organic forage production                                                                                                                              | ++                | +++                 | ++                | ++                | +++    | ++                   | ++                   | ++                     | ++                     |
| Production of milk and meat based on own forage                                                                                                                            | ++                | +++                 | +++               | +++               | +++    | ++                   | ++                   | ++                     | ++                     |
| 'international' (Simmenthal, Holstain)<br>and local (Baltata Romaneasca) breeds:<br>70% Simmenthal and Baltata, 30%<br>Holstain                                            | ++                | ++                  | ++                | ++                | ++     | ++                   | ++                   | ++                     | ++                     |
| Short value chain including all stages according to the F2F strategy (production, processing, direct selling in own shops and selling by intermediaries, own restaurants?) | +++               | +++                 | ++                | ++                | +++    | +++                  | +++                  | ++                     | ++                     |













## **Implementation Gaps**

- investments for processing plants (in Italy, maturation of the meat is a critical process to manage in many places), distribution and consumption (restaurant).
- the low number of organic producers could be a limiting factor to offer constant production in many rural areas, especially for beef meat (more common pig, chicken and rabbit meat producers).
- the presence of production sites, slaughterhouse and processing plants within a short distance is a challenge and it is related to the wellness of cattle and the economic aspects
- farmers' knowledge
- market availability

## **Research Gaps**

- Economic viability of organic meat productions and value chains and in general, their sustainability.
- Identification of alternative organic short value chains that can improve farmers' income in each Country.
- Characterisation of meat/milk quality and pastures
- Consumers' attitude

## **Suggestions to Adapt**

- signing agreements with existing slaughterhouses or processing plants is more viable, especially for beef meat.
- verify if in the area there are already producers' organisations that cover at least a part of the short value chain and verify if it is possible to work with them;
- focus on cattle breeds that have a different meat quality from that of the best-known meat breeds (In Italy, there's the example of the Chianina breed)
- evaluate involving well-known national/international associations (for instance, Slow Food) to promote the image and the value of organic productions.





# **COST-BENEFIT ANALYSIS**

## **INVESTMENT COSTS**

| Total initial investment costs at start up:                                     | high |
|---------------------------------------------------------------------------------|------|
| Initial authorisation costs (e.g. sanitary, veterinary, etc.)                   | high |
| Initial advisory costs                                                          | high |
| Initial buildings and machineries                                               | high |
| Initial certification costs                                                     | mid  |
| Initial working capital (personal qualification, marketing and promotion, etc.) | high |

## **ON-GOING COSTS**

| On-going advisory costs                | high |
|----------------------------------------|------|
| On-going certification costs           | high |
| On-going buildings and machinery costs | high |
| On-going working capital               | high |

#### **BENEFITS RELATIVE TO ORIGINAL SYSTEM**

#### Economic

| Reduction in energy consumption (electricity; fuel consumption)                  | mid                      |
|----------------------------------------------------------------------------------|--------------------------|
| Reduction in input use (fertilizers; pesticides; feed) etc.                      | none or low              |
| Payback period                                                                   | none or low              |
| Product value added                                                              | not applicable/not known |
| Additional farm income through agroecological/agri-environmental payment schemes | not applicable/not known |

#### Environmental

| Animal feed self-sufficiency increase | mid         |
|---------------------------------------|-------------|
| Biodiversity increase                 | mid         |
| Improved nitrogen cycling             | high        |
| Soil regeneration                     | none or low |
| Animal health and welfare improvement | mid         |

## Social

| Workload reduction             | mid |
|--------------------------------|-----|
| Engagement of young generation | mid |

# Literature

## **English**

- Vitali A, Grossi G, Martino G, Bernabucci U, Nardone A, Lacetera N. Carbon footprint of organic beef meat from farm to fork: a case study of short supply chain. J Sci Food Agric. 2018 Nov;98(14):5518-5524. doi: 10.1002/jsfa.9098. Epub 2018 Jul 9. PMID: 29691877.
- Welfare of cattle at slaughter (wiley.com)