CONTEXT PROFILE

FARMER Anna & Anders Carlsson -Skogsgård

INNOVATION Foster cows on semi-natural grasslands

MAIN DOMAIN OF THE INNOVATION Animal management

AGROCLIMATIC AREA Atlantic central

CLIMATE Moderate rainfall

SOIL TYPE Loam

MANAGEMENT Pasture dairy

TECHNICAL Computer-based

CONTEXT PROFILE SWEDEN

Case Study: SE_04	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Use of dairy cows as foster cows, raising 2-3 calves each	+++	+++	+++	+++	+++	+++	+++	+++	+++
Calves are fed milk produced from forage grown in pastures unsuitable for other uses	+++	+++	+++	+++	+++	+++	+++	+++	+++
Calving is aligned with natural pasture growth in spring	+++	+++	+++	+++	+++	+++	+++	+++	+++

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

- This system may be challenging for very intensive farms with high-production breeds like Holstein Friesians
- A minimum number of calves is required for this system

Research Gaps

- Conduct extensive cost benefit analysis to assess economic viability
- Evaluate the impact on animal health, animal welfare and milk composition
- Compare foster cow calf rearing with suckler cow-based systems

farming regions

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• Adopt semi-intensive farming systems, particularly in traditionally

intensive

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs		
On-going certification costs		
On-going buildings and machinery costs		
On-going working capital		

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

mid	
mid	

high
high
not applicable/not known
high
mid

not applicable/not known
not applicable/not known
high
high
high

lo	W

not applicable/not known

not applicable/not known

not applicable/not known

low

not applicable/not known

Literature

English

• Topping pasture: <u>https://pasture.io/management/topping#what-is-topping-pasture</u>

^{*} ⋅ ↓ ↓ ⋅ ★ Funded by ↓ ⋅ ★ the European Union Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.