CONTEXT PROFILE

FARMER Marianne Schönning -Härnebo

INNOVATION Investing in irrigation for pastures

MAIN DOMAIN OF THE INNOVATION Improvement of grassland management

AGROCLIMATIC AREA Boreal

CLIMATE Moderate rainfall

SOIL TYPE Loam

MANAGEMENT Pasture dairy

TECHNICAL Computer-based

FINANCE/INVESTMENT High

MARKET Global

SOCIAL Full-time farmer

CONTEXT PROFILE SWEDEN

Case Study: SE_05	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Prolonged drought periods require efficient water management solutions	+++	+++	+++	+++	+++	+++	+++	+++	+++
Utilising readily available water sources for irrigation	+	++	++	++	++	++	++	+	+
Implementing electric pumps to enhance water distribution	+	++	++	++	++	++	++	++	++

Generic information/not relevant

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Implementation Gaps

- Costs of the system (expensive)
- Legal implications in some regions regarding water use or equipment installation

Research Gaps

• Conduct comprehensive cost benefit analyses across various contexts and farming systems

unreliable

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

Suggestions to Adapt

• Consider using diesel-powered systems in areas where electricity is unavailable or

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:

- Initial authorisation costs (e.g. sanitary, veterinary, etc.)
- Initial advisory costs
- Initial buildings and machineries
- Initial certification costs
- Initial working capital (personal qualification, marketing and promotion, etc.)

ON-GOING COSTS

On-going advisory costs	not applicable/not known
On-going certification costs	not applicable/not known
On-going buildings and machinery costs	mid
On-going working capital	mid

BENEFITS RELATIVE TO ORIGINAL SYSTEM

• Economic

Reduction in energy consumption (electricity; fuel consumption)

Reduction in input use (fertilizers; pesticides; feed) etc.

Payback period

Product value added

Additional farm income through agroecological/agri-environmental payment schemes

• Environmental

Animal feed self-sufficiency increase

Biodiversity increase

Improved nitrogen cycling

Soil regeneration

Animal health and welfare improvement

• Social

Workload reduction

Engagement of young generation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.

mid
low
low
high
not applicable/not known
mid

not applicable/not known
mid
mid
not applicable/not known
not applicable/not known

high
high
mid
mid

mid
high

Literature

• None

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission . Neither the European Union nor the European Commission can be held responsible for them.