

CONTEXT PROFILE

INNOVATION

Lambing in June for optimised use of seminatural grasslands and parasite control

MAIN DOMAIN OF THE INNOVATION

Animal management

AGROCLIMATIC AREA

Continental north

CLIMATE

Moderate rainfall

SOIL TYPE

Loam

MANAGEMENT

Ley farming

TECHNICAL

Easy

FINANCE/INVESTMENT

Low

MARKET

Local-urban

SOCIAL

Part-time farmer

Case Study: SE_07	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Semi-natural grasslands for grazing ewes	+++	++	++	++	+++	++	++	+++	+++
Seasonal lambing in June	+++	+++	+++	+++	+++	+++	+	+	+
Lambs are let out on pasture after parasite populations have decreased (half June in this case)	++	++	++	++	++	++	++	++	++
Ensuring sufficient supplementary feed is available later in the season to support growth	++	++	++	++	++	++	++	+	+

Implementation Gaps

 Dry summer period with reduced grass quality impacting livestock nutrition and growth

Research Gaps

• Identify the conditions under which parasites die before lambing to improve management strategies

Suggestions to Adapt

 Align lambing periods with local environmental conditions to minimize parasite impact and optimize pasture use

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:	low
Initial authorisation costs (e.g. sanitary, veterinary, etc.)	not applicable/not known
Initial advisory costs	low
Initial buildings and machineries	not applicable/not known
Initial certification costs	not applicable/not known
Initial working capital (personal qualification, marketing and promotion, etc.)	not applicable/not known

ON-GOING COSTS

On-going advisory costs	not applicable/not known
On-going certification costs	not applicable/not known
On-going buildings and machinery costs	not applicable/not known
On-going working capital	not applicable/not known

BENEFITS RELATIVE TO ORIGINAL SYSTEM

Economic

Reduction in energy consumption (electricity; fuel consumption)	not applicable/not known
Reduction in input use (fertilizers; pesticides; feed) etc.	not applicable/not known
Payback period	high
Product value added	mid
Additional farm income through agroecological/agri-environmental payment schemes	not applicable/not known

Environmental

Animal feed self-sufficiency increase	none or low
Biodiversity increase	high
Improved nitrogen cycling	not applicable/not known
Soil regeneration	not applicable/not known
Animal health and welfare improvement	high

Social

Workload reduction	mid
Engagement of young generation	mid

Literature

English

- https://www.sciencedirect.com/science/article/abs/pii/S0921448805004864
- https://www.nature.com/articles/s41598-020-69576-w
- https://www.tandfonline.com/doi/full/10.1080/1828051X.2022.2155587