

CONTEXT PROFILE

FARMER

Tomas Olsson - Norrby

INNOVATION

Map and Excel spreadsheet for planning rotational grazing

MAIN DOMAIN OF THE INNOVATION

Improvement of grassland management

AGROCLIMATIC AREA

Atlantic central

CLIMATE

Moderate rainfall

SOIL TYPE

Loam

MANAGEMENT

Ley farming

TECHNICAL

Computer-based

FINANCE/INVESTMENT

Mid

MARKET

Local-urban

SOCIAL

Full-time farmer

Case Study: SE_08	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Grazing calendar, a structured schedule for rotational grazing	+++	+++	+++	+++	+++	+++	+++	+	+
Regular grass growth measurements to track pasture productivity and adjust grazing management accordingly	+++	+++	+++	+++	+++	+++	+++	+	+
Visual detailed farm map on the office white board for efficient planning and communication	+++	+++	+++	+++	+++	+++	+++	+++	+++

Implementation Gaps

- The need to convince farmers of the importance of keeping track of the grazing calendar and monitoring grass growth and paddock conditions to respond effectively to current situations
- Particularly challenging in Mediterranean regions due to diverse vegetation types and less consistent grass availability

Research Gaps

 Various tools are available, ranging from simple Excel sheets to specialized software.
The primary challenge lies in effective transfer, adaptation, and adoption by farmers.

Suggestions to Adapt

- Numerous tools are available for cattle (e.g., grazing calendars, grass growth monitoring systems) but they are less developed for sheep farming. These tools need to be adapted to sheep-specific references, such as pre- and post-grazing heights.
- While methodologies for grass growth evaluation exist (e.g., weekly visual assessments or measurements with a platemeter), adoption remains challenging in areas with mixed vegetation types.

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:	low
Initial authorisation costs (e.g. sanitary, veterinary, etc.)	not applicable/not known
Initial advisory costs	not applicable/not known
Initial buildings and machineries	not applicable/not known
Initial certification costs	not applicable/not known
Initial working capital (personal qualification, marketing and promotion, etc.)	not applicable/not known

ON-GOING COSTS

On-going advisory costs	not applicable/not known
On-going certification costs	not applicable/not known
On-going buildings and machinery costs	not applicable/not known
On-going working capital	mid

BENEFITS RELATIVE TO ORIGINAL SYSTEM

Economic

Reduction in energy consumption (electricity; fuel consumption)	not applicable/not known
Reduction in input use (fertilizers; pesticides; feed) etc.	high
Payback period	high
Product value added	high
Additional farm income through agroecological/agri-environmental payment schemes	not applicable/not known

Environmental

Animal feed self-sufficiency increase	mid
Biodiversity increase	not applicable/not known
Improved nitrogen cycling	not applicable/not known
Soil regeneration	not applicable/not known
Animal health and welfare improvement	not applicable/not known

Social

Workload reduction	mid
Engagement of young generation	mid

Literature

French

• French website of the National Technology Network "Grasslands in the Future" https://afpf-asso.fr/fiches-methode-du-rmt

English

- Delaby L., Duboc G., Cloet E., Martinot Y., 2015. Pastur'Plan: a dynamic tool to support grazing management decision making in a rotational grazing system. Grassland Science in Europe 20, 200-202. https://hal.science/hal-01211030v1/file/15%20Delaby200_1.pdf
- Hanrahan L., Geoghegan A., O'Donovan M., Griffith V., Ruelle E., Wallace M., Shalloo L., 2017. PastureBase Ireland: A grassland decision support system and national database, Computers and electronics in agriculture 136, 193-201. https://www.sciencedirect.com/science/article/pii/S0168169916304781
- https://www.mla.com.au/news-and-events/industry-news/five-tools-you-can-use-to-improve-your-grazing-land-management-skills/
- Teagasc., 2025. Sheep Grazing Infastructure Guide. https://www.teagasc.ie/media/website/publications/2018/Sheep-grazing-infrastructure-guide.pdf